|   
	 
 
	1. Zaitoun N M, Aqel M J. Survey on image segmentation techniques. Procedia Computer Science, 2015, 65: 797-806
 
	2. Cao M Y, Wang S, Wei L, et al. Segmentation of immunohistochemical image of lung neuroendocrine tumor based on double layer watershed. Multimedia Tools and Applications, 2019, 78: 9193-9215
 
	3. Goyal S, Kumar S, Zaveri M A, et al. Fuzzy similarity measure based spectral clustering framework for noisy image segmentation. International Journal Uncertainty, Fuzziness Knowledge-Based Systems. 2017, 25(4): 649-673
 
	4. Liu F Y, Lin G S, Shen C H. CRF learning with CNN features for image segmentation. Pattern Recognition, 2015, 48(10): 2983-2992
 
	5. Zhang X F, Jian M W, Sun Y J, et al. Improving image segmentation based on patch-weighted distance and fuzzy clustering. Multimedia Tools and Applcations, 2020, 79: 633-657
 
	6. Hasnat M A, Alata O, Trémeau A. Joint color-spatial-directional clustering and region merging (JCSD-RM) for unsupervised RGB-D image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11): 2255-2268
 
	7. Jain S, Laxmi V. Color image segmentation techniques: A survey. Proceedings of the 1st International Conference on Microelectronics, Computing and Communication Systems (MCCS’15), 2015, Nov 14-15, Ranchi, India. Lecture Notes in Electrical Engineering (LNEE) 453. Singapore: Springer Nature Singapore Pte Ltd, 2018: 189-197
 
	8. Permuter H, Francos J, Jermyn I. A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recognition, 2006, 39(4): 695-706
 
	9. Duan H Y, Yang H, Li S J, et al. Improved edge detection method based on wavelet . Computer Engineering and Design, 2020, 41(12): 3485-3489 (in Chinese) 
 
	10. Shao G F, Li D Y, Zhang J F, et al. Automatic microarray image segmentation with clustering-based algorithms. PLOS ONE, 2019, 14(1): Article e0210075
 
	11. Qin C, Song S J, Huang G, et al. Unsupervised neighborhood component analysis for clustering. Neurocomputing, 2015, 168: 609-617
 
	12. Li Z W. Spectral clustering algorithm and its application in SAR image segmentation. Technological Development of Enterprise, 2015, 34(29): 46-47 (in Chinese)
 
	13. Dong A G, Xue F. Image segmentation algorithm based on random spectral clustering . Mathematics in Practice and TheoryMathematics in Practice and Theory, 2013, 43(23): 169-174 (in Chinese)
 
	14. Chen J S, Li Z Q, Huang B. Linear spectral clustering superpixel. IEEE Transactions on Image Processing, 2017, 26(7): 3317- 3330
 
	15. Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976
 
	16. Tao L, Xue D H, Lȕ Z Y, et al. Unsupervised change detection using fast fuzzy clustering for landslide mapping from very high-resolution images. Remote Sensing, 2018, 10(9): Article 1381
 
	17. Wu C M, Yang X Q. Robust credibilistic fuzzy local information clustering with spatial information constraints. Digital Signal Processing, 2020, 97: Article 102615
 
	18. Li X C, Liu H K, Wang F, et al. The survey of Fuzzy clustering method for image segmentation. Journal of Image and Graphics, 2012, 17(4): 447-458 (in Chinese)
 
	19. Huang P, Zheng Q, Liang C. Overview of image segmentation methods. Journal of Wuhan University: Science Edition, 2020, 66(6): 519-531 (in Chinese)
 
	20. Li Q H, Ural S, Anderson J, et al. A fuzzy mean-shift approach to lidar waveform decomposition. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7112-7121
 
	21. Ahmed B, Al-Ani M. Digital medical image segmentation using fuzzy C-means clustering. UHD Journal of Science and Technology, 2020, 4(1): 51-58
 
	22. Araki S, Nomura H, Wakami N. Segmentation of thermal images using the fuzzy C-means algorithm. Proceedings of the 2nd IEEE International Conference on Fuzzy Systems (ICFS’93), 1993, Mar 28-Apr  1, San Francisco, CA, USA. Piscataway, NJ, USA: IEEE, 1993: 719-724
 
	23. Baruah R D, Angelov P. DEC: Dynamically evolving clustering and its application to structure identification of evolving fuzzy models. IEEE Transactions on Cybernetics, 2014, 44(9): 1612-1644
 
	24. Verma H, Agrawal R K, Kumar N. Improved fuzzy entropy
clustering algorithm for MRI brain image segmentation. International Journal of Imaging Systems and Technology, 2014,
24(4): 277 - 283
 
	25. Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated dusters. Journal of Cybernetics, 1973, 3(3): 32-57
 
	26. Bezdek J C. Pattern recognition with fuzzy objective function algorithms. New York, NY, USA: Plenum, 1981: 12-98
 
	27. Belean B, Borda M, Ackermann J, et al. Unsupervised image segmentation for microarray spots with irregular contours and inner holes. BMC Bioinformatics, 2015, 16: Article 412
 
	28. Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias fields estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 2002, 21(3): 192-200
 
	29. Zhang Y X, Bai X Z, Fan R R, et al. Deviation-sparse fuzzy C-means with neighbor information constraint. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 185-199
 
	30. Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transaction on Systems, Man and Cybernetics, Part B (Cybernetics), 2004, 34(4): 1904-1913
 
	31. Song Q K, Ma L, Cao J K, et al. Image denoising based on mean filter and wavelet transform. Proceedings of the 4th International Conference on Advanced Information Technology and Sensor Application (AITS’15), 2015, Aug 21-23, Haerbin, China. Piscataway, NJ, USA: IEEE, 2015: 39-42
 
	32. Szilagyi L, Benyo Z, Szilagyii S M, et al. MR brain image segmentation using an enhanced fuzzy C-means algorithm, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (MBS’03), 2003, Sept 17-21, Cancun, Mexico. Piscataway, NJ, USA: IEEE, 2003: 724-726
 
	33. Cai W L, Chen S C, Zhang D Q. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition, 2007, 40(3): 825- 838
 
	34. Krinidis S, Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Transactions Image Process, 2010, 19 (5): 1328-1337
 
	35. Celik T, Lee H K. Comments on a robust fuzzy local information C-means clustering algorithm. IEEE Transactions Image Processing, 2013, 22(3): 1258-1261
 
	36. Zhang D Q, Chen S C. Kernel-based fuzzy and possibilistic C-means clustering. https://www.researchgate.net/publication/241398926_Kernel_Based_Fuzzy_and_Possibilistic_C-Means_Clustering. 2003
 
	37. Kannan S R, Ramathilagam S, Devi R, et al. Strong fuzzy c-means in medical image data analysis. Journal of Systems and Software, 2012, 85(11): 2425-2438
 
	38. Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge, UK: Cambridge University Press, 2000: 34-100
 
	39. Zhang W Y, Guo X J, Huang T Y, et al. Kernel-based robust bias-correction fuzzy weighted C-ordered-means clustering algorithm. Symmetry, 2019, 11(6): Article 753
 
	40. Gong M G, Liang Y, Shi J, et al. Fuzzy C-means clustering with local information and kernel metric for image segmentation. IEEE Transactions on Image Processing, 2013, 22(2): 573-584
 
	41. Chuang K S, Tzeng H L, Chen S R, et al. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 2006, 30(1): 9-15
 
	42. Xia J, Zhang C M, Zhang X F, et al. FCM anti-noise image segmentation algorithm combined with edge local information. Journal of Computer Aided Design and Computer Graphics, 2014, 26(12): 2203-2223 (in Chinese)
 
	43. Jia X H, Lei T, Wu Z D, et al. Fast fuzzy clustering algorithm based on combined membership degree. Journal of Lanzhou Jiaotong University, 2017, 36(1): 62-69 (in Chinese)
 
	44. Tang Y M, Ren F J, Pedrycz W. Fuzzy C-means clustering through SSIM and patch for image segmentation. Applied Soft Computing, 2020, 87: Article 1059284
 
	45. Guo Q, Gao S S, Zhang X F, et al. Patch-based image inpainting via two-stage low rank approximation. IEEE Transactions Visualization Computer Graphics, 2018, 24(6): 2023-2036
 
	46. Muller K R, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201
 
	47. Bezdek J C. Cluster validity with fuzzy sets. Journal of Cybernetics and Systems, 1973, 3(3): 58-72
 
	48. Bezdek J C. Mathematical models for systematic and taxonomy. Proceedings of the 8th International Conference on Numerical Taxonomy, 1974, Oeiras, Portugal. Chicago, IL, USA: The University of Chicago Press, 1975: 143-66
 
	49. Jia X H ,Tao L, Du X G, et al. Robust self-sparse fuzzy clustering for image segmentation. IEEE Access, 2020, 8: 146182-146195
  |