References 
1. Collins F S, Varmus H. A new initiative on precision medicine. The New England Journal of Medicine, 2015, 372(9): 793 -795 
2. Shen D, Wu G, Suk H I. Deep learning in medical image analysis. Annu Rev Biomed Eng, 2017 
3. Ronneberger O, et al. U-net: convolutional networks for biomedical image segmentation. MICCAI, Springer, 2015: 234 -241 
4. Stewart B W, Wild C P. World Cancer Report, 2014 
5. Cheng H D, Shan J, Ju W, et al. Automated breast cancer detection and classiflcation using ultrasound images: a survey. Pattern Recognition, 2010, 43(1): 299 -317 
6. Krizhevsky A, Sutskever I, Geoffrey E H. Imagenet classiflcation with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84 -90 
7. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ICLR, 2015 
8. Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014 
9. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. CVPR, 2015 
10. Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection. CVPR, 2016 
11. Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector. ECCV, 2016 
12. Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. ICCV, 2017 
13. Girshick R. Fast R-CNN. CVPR, 2015 
14. Ren S Q, et al. Faster R-CNN: towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 2015 
15. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. CVPR, 2016 
16. Lin T Y, Doll'ar P, Girshick R, et al. Feature pyramid networks for object detection. CVPR, 2017 |